Category: Research

Active mobility at GI-Forum conference

Today, I had the honour to chair another special session that dealt with GIS and mobility research at this year’s GI-Forum conference internet. The session “Spatial Perspectives on Active Mobility” was the third in a series (see here internet for a review of the 2016 and here internet for the 2015 session).
Of course, we will have a “Spatial Perspectives on …” session in 2018 again – the call will be published in December this year. So, consider this as an option for your publishing and dissemination strategy (by the way, the GI-Forum journal internet is open access!)

This year’s special session was a paper session with four speakers, who all went through a rigorous review process. The diversity of the contributions was high, demonstrating the wide range of mobility research where GIS plays a crucial role:

  • Irene Fellner internet from Vienna University of Economics and Business opened the session at the very local scale. She presented her work internet on landmark-based indoor navigation. Although the applied ILNM (“indoor landmark navigation model”), an extended version of Duckham’s et al. (2010 internet) LNM, performed well, Irene pointed to two major challenges: first of all, the ILNM requires very detailed data, which are not always available and secondly, the visibility of landmarks from the perspective of the user is not always given or unknown.
    Irene’s paper emerged from her master thesis at the University of Salzburg, where she successfully finished the UNIGIS MSc study program. Dr. Gudrun Wallentin, UNIGIS program director, regarded this special session as perfect stage to hand over the UNIGIS International Association (UIA internet) award for excellent master theses. Congratulations!
  • Ulrich Leth internet (Vienna University of Technology) presented the findings of a recent study where they investigated the impact of a bike sharing system on public transit ridership in the city of Vienna, which is famous for its extensive and well-performing public transit system. In total, Ulrich and colleagues analysed 1 million Citybike internet trips from 2015. Different to the expectation the title provoked, they found that the bike sharing system virtually has no impact on PT ridership, simply because of the huge difference in size and capacity. However, some details in their results were interesting and probably of relevance for other BSS: a) Citybike trips primarily substitute short and inconvenient PT trips, b) most bike sharing trips are made when the travel time ratio compared to public transit is 0,5 and c) the most popular OD relations are typical student trips (between transport hubs and university and student dormitories and transport hubs or universities).
  • Tabea Fian, a student from Georg Hauger’s internet (lead author of the paper) group, also from Vienna University of Technology, presented a spatial analysis of urban bicycle crashes in Vienna. Interestingly, the data were very similar to those I’ve extensively used in my PhD (see this paper internet). In a purely exploratory study design Georg has tried to identify blackspots in the network and tested for their significance. However, as it became evident in the discussion, final conclusions are hard to draw without a statistical population.
  • The last presentation was given by Anna Butzhammer internet from RSA iSpace. She presented parts of her excellent master thesis, in which she analysed the inter-modal accessibility of central places. For this, she developed a model that facilitates door-to-door travel time calculations with different modes. Her findings are especially important for planning and optimizing public transit systems, which can be regarded as backbone for sustainable mobility.

Tomorrow, the German-speaking sister conference, AGIT internet, will host a special forum on autonomous driving internet and on Friday I will chair another session on advances in GIS-T. Well, there will be a lot to discover, learn and discuss; if you don’t have the chance to be there physically, follow me on Twitter internet and stay updated.

Floating Bicycle Data

Our colleagues from Salzburg Research (SR) internet are very active in the field of floating car data generation, management and analysis. Among others, this real-time traffic status service internet is fed by their data.
In order to establish a community of researchers, authorities and companies around the topic of floating car data, SR hosts the annual “FCD Forum” in Salzburg. This year, I had the honor to contribute to the program internet. Since we have been working a lot with bicycling data over the last years, I was asked to evaluate the potentials of a conceptual transfer from FCD to “Floating Bicycle Data”. Well, a very fundamental finding in my research is that the term “Floating Bicycle Data” is not established yet in the scientific literature. Thus, the term is to be regarded as a word game derived from the forum’s agenda. However, I think it makes perfectly sense to invest some efforts in this context.

In my presentation internet, I started my argumentation from the fact that a) bicycle traffic is a relevant element of urban mobility, b) the modal share is likely to increase in the next years and c) a sound evidence base is required for future investments in bicycling infrastructure.
Currently, very little is known about the spatial and temporal distribution of bicycle traffic within cities. Comparably few permanent counting stations, sporadic, punctual counting campaigns and irregular mobility surveys do not provide sufficient and reliable data to support evidence-based policies on the local scale level. On the other hand, the popularization of the “humans as sensors” concept (Goodchild 2007 internet) has opened new possibilities to acquire data on bicyclists’ movements in urban networks. When talking about floating bicycle data, I used it as a catchy term, which summarizes all kind of geo-located movement data from bicyclists; they don’t need to be necessarily in real-time.

As I’ve shown in my presentation, there a numerous application examples where floating bicycle data would make perfectly sense. However, there are several conceptual challenges, which need to be considered (most of them are also relevant for floating car data):

  1. When floating bicycle data are harvested through crowd-sourcing applications the data are not necessarily representative for the entire population. I referred to participation inequality or the 90-9-1 rule (see Nielsen 2006 internet) in this context. Additionally, different apps are used for different purposes. Thus, the data might be biased for example towards leisure trips (as it is the case with Strava internet data in Salzburg).
  2. Currently, there is no common data standard and the heterogeneity of bicycle mobility data is huge. Good news in this context were published earlier in this year by the European Commission (see this report internet from the COWI project).
  3. Since there is no obligation to register bicycles, the (spatial distribution of the) total population is unknown. Consequently, it is hard to estimate the total bicycle traffic volume from samples. In contrast to that, cars are registered and at least the car holders’ address is known.
  4. In order to further process movement data (GPS trajectories), a sound and very detailed reference graph is required for map matching. In most cases network graphs are not available at this level of detail (this holds true for authoritative data as well as for OSM). Consequently, GPS trajectories can only be matched to center lines at the moment.

Although this selection of challenges might be regarded as obstacle for a broader engagement (I prefer to interpret them as research opportunities), I expect the topic of floating bicycle data to emerge in the coming years for a simple reason: the market for floating bicycle data is definitely smaller than for floating car data. But, bicycle traffic is already a major element in urban traffic and its share will become even more substantial in the next years. As a consequence, cities need to invest in adequate infrastructure and these investments will hardly be made without a sound evidence base. Floating bicycle data could close a significant gap in this regard.


If you are already working with floating bicycle data (but haven’t used the term yet), have ideas on how to further push the topic or simply want to comment on the concept, please do not hesitate to contact me! I’m happy to learn from your expertise.
For those who are about to write a thesis in this or a related context, have a look at this proposal internet.

Topics for GIScience master theses

After several months of setting the stage and doing lots of preparatory work, we are currently entering the ‘core phase’ in two research projects at the GI Mobility Lab internet. In this context we provide the opportunity to Master’s students to participate in the projects and write their thesis in GIScience (or related fields).

Our part in the FamoS internet project is, among others, to develop an agent-based bicycle flow model for an entire city. In this context we offer two topics:

  1. Behavior to space (description internet)
  2. Exploring geoprocessing, geovisual analytical and mapping functionalities of GAMA (description internet)

Experts from sports medicine, GIScience and transport planning and management are collaborating in the GISMO internet research project in order to provide a sound evidence basis for the promotion of active commuting. Part of the research is a clinical study, in which we document the subject’s mobility by different means. For the analysis of this data we offer the following two topics:

  1. Analysis of movement data from fitness watches (description internet)
  2. Linking travel diaries and GPS trajectories (description internet)

The topics are primarily offered to local internet and UNIGIS internet students. However, I’m also open to any other form of supervision and collaboration, given we find a sound format for it.

Spatial information and bicycling safety

Originally, this blog was intended to document the progress of my PhD research. Mhm, this goal has been successfully reached yesterday …

Successfully defending my doctoral research (pictures by R. Wendel)

I finished my doctoral studies with a thesis on Spatial Information and Bicycling Safety and yesterday’s defense. The thesis internet is based on five peer-reviewed, published papers and aims to strengthen the spatial perspective in bicycling safety research.
The thesis is motivated by the fact that bicycling safety research is dominated by non-spatial domain experts, e.g. with backgrounds in trauma medicine, psychology, bio-mechanics, sociology, epidemiology, engineering, planning, law and some more. Interestingly, the spatial perspective on bicycling safety is hardly ever considered in these domain-specific approaches. This holds especially true for bicycle crash analyses, where basic geographical concepts, such as nearness, spatial autocorrelation and topology, are hardly ever considered.
Neglecting location as a co-determining attribute of safety is remarkable for a very simple reason. Mobility of people – and thus bicycling – as such is spatial by its very nature. Consequently, bicycling safety (from the physical environment to crashes to individually experienced safety threats) has spatial facets, which can be modeled and analyzed accordingly in order to gain relevant information for safer bicycling.

The primary hypothesis of my doctoral thesis is that spatial models and analyses contribute to a better understanding of certain aspects of bicycling safety and provide relevant results, which support measures to mitigate safety risks for bicyclists. Specifically I argued that:

  • Geographical Information Systems (GIS) facilitate holistic approaches for improving the bicycling safety situation. The spatial perspective is relevant for virtually all stages of the implementation of bicycling safety strategies.
  • Model-based approaches have a great potential in safety assessment and can form the basis for a number of applications – from status-quo analysis to planning and route optimization.
  • The spatial analysis of bicycle crashes reveals significant and safety-relevant patterns and particularities, which remain hidden in common, non-spatial or highly aggregated approaches.
  • The spatial perspective is crucial for advanced (simulation) models, which are necessary for reliable risk estimations on the local scale. Furthermore, the spatial implications of risk mapping on the local scale must be made explicit.

The thesis is structured in three elements. The first paper demonstrates the contribution of GIScience to bicycling safety research and is intended to set the stage for the remaining papers. Two of them primarily deal with spatial models in the context of road space assessment and transport modeling, while the rest is about spatial analysis of bicycle crashes.

Structure of the thesis

Although the completion of my doctoral studies is a huge, personal milestone, there is still a lot of research work in this context to be done. Besides the further development of the spatial models, the applied statistical methods and analysis routines, I see research gaps in the context of data (from static to dynamic real-time data and data streams), information (e.g. what are the effects of information provision on decision process or on individual and collective behavior?) and cross-domain collaboration.
The amount of work that still lies ahead motivates me to further blog on some of our research activities and to connect with anyone who is interested in spatial information, bicycling safety, urban mobility etc. I’m looking forward to learning, reading and hearing from you in virtual internet and – even more preferably – in face-to-face communication!

VeloCittà bikesharing & POLIS conference

We contribute spatial information to the design and optimization of a city-wide BBS.

We contribute spatial information to the design and optimization of a city-wide BBS.

150 participants from 23 countries gathered on November 30th in Rotterdam to attend the VeloCittà internet bikesharing conference, which was held in conjunction with the annual POLIS internet conference (450 participants, according to the organizers). While the VeloCittà conference was exclusively dedicated to bikesharing, the POLIS conference offered a broader perspective on sustainable transport. I was in Rotterdam primarily for the POLIS conference because I had a presentation, but it was also a great opportunity to get an impressive update of recent bikesharing practice and research. Lot’s of what I’ve learned can be directly linked to our current involvement in the planning of a bikesharing system in Salzburg, Austria.
All presentations of both conferences can be found on the respective websites. Thus, I will focus only on two topics I’ve found especially relevant for our research and project work.


Willemijn Lambert (@WM_Lamber internet) captured the essence of the VeloCittà bikesharing conference.

Success factors for bikesharing systems

polis2016aIn a very interesting session at the POLIS conference on sharing systems, Sebastian Schlebusch from Nextbike internet gave some insights into the company’s history. Several years they were treated quite harshly by public transit operators who feared for their business. However the break through of bikesharing systems (BSS) came. In accordance with Sebastian’s talk the following success factors occurred in various presentations at both conferences:

Cologne's bike sharing system (KVB Rad) is integrated in the city's public transit service.

Cologne’s bikesharing system (KVB Rad) is integrated in the city’s public transit service.

  • Political support. Obviously this seems to be the most decisive factor for successful BSSs in any country.
  • Integrated systems. An increasing number of cities regard bikesharing systems as an element of public transit services. This is reflected in the planning of the network, pricing and promotion. Cologne’s BSS internet is a good example for a large, integrated system.
  • Robust business models. This factor becomes important when initial subsidies fade out. Alberto Castro internet, one of the keynote speakers at VeloCittà, demonstrated how fast BSSs without sound financial (and operational) basis disappear internet.
  • Appropriate planning. Nicole Freedman, keynote speaker at VeloCittà, made a compelling case for the importance of realistic projections and tailored BSS design. Cities are comparable only to a certain degree and thus, BSSs cannot be simply transferred. Specific (mobility) characteristics of cities, from PT service level to topography, need to be taken into account.
  • User-tailored, easy solutions. The needs and expectations of users must be addressed in every aspect: from intuitive interfaces for initial registration to the ease of handling the hardware.
    To know and consider people’s reasons for not using BSSs is especially valueable when systems should be improved. In many cases the barriers for BSS usage can be lowered or removed with small adaptions.
  • Visibility in public space. In order to raise awareness for bikesharing it is necessary that the system is visible in public space. This visibility can be achieved by an appropriate station design, but also with art in public space.
  • Make it beautiful. Directly associated to the latter point Nicole Freedman strongly argued for aesthetically pleasing, beautiful bikes and infrastructure. Way too often BSSs are shaped by technicians and technology. With a good design of hard- and software people can be made curious; once they are attracted to the system, the possibility is high for turning prospective into active users.

polis2016cAt both conferences lots of case studies were presented. At least two of them were really remarkable:
Krakow (~ 760,000 inhabitants) initially launched a system with 30 stations and 300 bikes, which turned out to be not that successful. Thus, the city relaunched the entire system under a new name (Wavelo internet) and with 1,500 bikes at 150 stations, which is above the average bikes per people ratio in Europe (ref. OBIS internet handbook)!
A much smaller, but very successful BSS can be found in Pisa (CICLOPI internet). Marco Bertini presented the city’s strategy to make people in Pisa love their bikesharing system: “Bikesharing is note a service for citizens, but part of the community.” With this approach Pisa achieved impressive key figures: 5-8 rides per bike and day, virtually no vandalism and not a single bike stolen in 4 years.

Road Safety

polis2016dMore people are killed in road crashes than by malaria or tuberculosis, according to a recent OECD report internet that calls for a paradigm shift in road safety. Before this background and with a special focus on the role of large cities the International Transport Forum (ITF internet) launched the Safer City Streets internet project, which was presented by Alexandre Santacreu. The aim of this project is to provide an environment for exchange of data, experience and knowledge. What I regard as an asset of this project is the drive to publish data as OGD.
Alex pointed to the difficulty of comparing data from various sources, especially when crashes of vulnerable road users are investigated (different reporting procedures, classification, under-reporting etc.). Of course, this is nothing new, but my impression is that the limited comparability of data is mostly neglected in analyses of global data (I’ve demonstrated an aspect of this in this post internet).

While the Safer City Streets project operates on the global scale, the Netherlands have launched a national project where cities can learn from each other with respect to crash prevention and safety measures. Charlotte Bax from SWOV internet presented this benchmarking project that is built upon the three elements comparing – learning – improving. Two aspects caught my attention: (1) None of the data are made public because the involved city administrations fear the pressure that might be put on them after publishing crash details. (2) Even in the Netherlands’ city administrations struggle to make use of their data; Charlotte referred to cases where responsible departments were not able to tell how many kilometers of bicycle infrastructure they had.

Benchmarking on the very local level was at the core of Eric de Kievit’s internet presentation on the development of a compound road safety assessment. For this, two approaches were combined. Firstly, a network safety index, which consists of an enormously detailed description of the road space (every 25 meters the road profile was investigated based on street view photos). And secondly, a safety performance indicator that focuses on road user’s behavior. Both perspectives are then used as basis for targeted infrastructure measures, law enforcement, education and communication campaigns.

My own contribution to the session on road safety was about spatial analysis of bicycle crashes on the local scale level. The presentation was a synthesis of two of my latest journal papers (JTRG internet and Safety internet):


In both conferences it became evident that there are lots of innovative and creative solutions for promoting sustainable mobility in urban environments. However, there is no philosopher’s stone that solves all problems immediately, but cities all over Europe have to work hard to make progress.
I have the strong impression that the discussion and collaboration across domains and institutions is a key for sustainable solutions for cities. Urban environments are complex and thus require multifaceted strategies. In any way, we are ready to contribute spatial expertise for the good of our cities and their citizens.

Bicycle routing portals

Although the impact of information on mode and route choice is disputed, the number of bicycle routing and navigation applications is constantly growing.
For this year’s International Cycling Safety Congress (ICSC internet) we have investigated 30 current bicycle routing portals with a specific focus on “safety”. The study is limited to web applications with a desktop version and without obligatory registration. Mobile apps, which are increasingly standalone products (or environments) were not considered.

Click on the picture to download the conference paper with all details of the study.

Click on the picture to download the conference paper with all details of the study.

The central hypothesis of our study was that existing bicycle routing portals don’t address prevalent safety concerns explicitly. We further argue that bicycle routing portals might contribute to the promotion of safe(r) routes and consequently to an overall perception of the bicycle as safe mode of transport.
With this study we take a first step towards a better exploitation of information applications’ potential to promote (utilitarian) bicycling. Based on our evaluation, bicyclists’ expectations and the role of routing information in their mobility routines should be investigated in more detail. This would allow for the formulation of design guidelines for future information products for bicyclists.
However, we are totally aware of the fact that information as such can never improve the safety situation – this can only be done by adequate infrastructure. But we see the potential of bicyclist-specific (routing) information to bridge the gap between the current, mostly sub-optimal safety situation and a perfect environment. Geographical Information Systems (GIS) allow for the identification of optimal routes in terms of safety. Depending on the infrastructure, recommended connections might not be perfect, but the best possible solution in the given situation. We have made quite good experiences in this regard with the bicycle route planner we have developed for Salzburg (see internet).

I know of many highly innovative bicycle routing and navigation applications and I’d be more than happy to learn from your experiences and expertise. I guess we could make a step forward and provide better, user-tailored information if we joined forces. As an invitation to further work on this topic we make the data of our study fully available. You can access the evaluation spread sheet via this link internet. So let’s get started …

GIS & bicycling – recent research activities

This post is an update of current research projects I’m involved in as member of the GI Mobility Lab internet. The nice thing is that all three projects allow us to work with domain experts from very different fields: public transit planners, medical doctors, transport engineers etc. And although the contexts of the featured projects are diverse, they all have two things in common: (1) the bicycle is in the focus and (2) we add a distinct spatial flavor to the overall research approaches.

Bike Sharing

The city of Salzburg is definitely not a front runner when it comes to bike sharing. However, the city is currently pushing the topic. In order to achieve a better evidence base for future decisions, our lab was invited for a study on the expected user potential of bike sharing in Salzburg.


For this study we developed a study design that on the one hand incorporates existing findings from literature and on the other hand explicity considers the spatial configuration of the city. Additionally we launched an open online survey with which we aimed to better understand the needs of potential users.


Different to most of the existing planning approaches we used spatial, socio-demographic data to estimate the number of potential users on the local scale. We extracted the most relevant socio-demographic determinants of bike sharing usage from literature and mapped them. These maps nicely represent the character of the city (e.g. the distribution of academics or the spatial patterns of work places). Based on structural analysis of the city we calculated different scenarios of bike sharing penetration levels for every single census block.
Currently we are working on the final report – results will be published on our website internet.


The project FamoS (Fahrradverkehrsmodelle als Planungsinstrument zur Reorganisation des Straßenraums) aims to establish a sound data base for transport models, develop bicycle flow models, and implement these models into planning tools for the evidence-based re-organisation of the road space. The project (FFG #855034), which is led by the Technical University of Graz internet, is funded by the Austrian Ministry of Transport, Innovation and Technology under the “Mobilität der Zukunft” program internet.


The background of the research project ist to strengthen active forms of mobility and to provide an evidence base for targeted interventions. For planning and (re)organization of public roads and places, suitable data and innovative planning tools must exist for these user-groups. Widespread analyzing, planning and simulation tools already exist for motorized forms of mobility, but to introduce evidence-based measures and politics for active forms of mobility, still considerable information- and planning barriers exist.
Our role in this project is to establish a consolidated data base for transport models and to develop an agend-based model for bicycle flows in Salzburg. It gives us the opportunity to further improve a first ABM-based bicycle flow model for Salzburg internet and for Gothenburg. Methodologically the project partly builds on one of my recent papers internet on GIS in transport modeling.


At a first glance there seems to be little overlap between sport medicine and GIS. Nevertheless we recently kicked-off a project, which is located at the intersection of medicine, mobility management and GIS. GISMO internet – Geographical Information Support for Healthy Mobility (FFG #854974) is also funded by the Austrian Ministry of Transport, Innovation and Technology under the “Mobilität der Zukunft” program internet. The project is coordinated by our department. We cooperate with five partners from Vienna, Zurich and Salzburg (a German language overview of the consortium can be found here internet).


GISMO internet aimes to support healthy mobility in the application context of corporate mobility management initiatives. As part of the project, the health effects of several interventions that promote sustainable, active mobility are investigated quantitatively. These data are then combined with spatial models and analysis routines in an integrated information platform which is subsequently evaluated.
The overall research goal is to estimate the health effect for each mode of transport for the individual, spatial relation between place of residence and working place. With this approach existing lines of argument that primarily focus on mobility and environmental effects as well as on efficiency, are complemented with components addressing employee’s health and health prevention. The drafted information platform serves as innovative solution for evidence-based planning, consulting and information.

For the projects FamoS and GISMO we are currently looking for an additional researcher. In cases I have raised your interest and you want to join us, have a look at the job advertisement internet.

I see many, many links to similar, existing projects and studies. The body of literature on bike sharing, transport modeling and healthy mobility is huge. Nevertheless, a lot of work still lies ahead. GIS and the spatial perspective on bicycle mobility are capable to leverage existing approaches to a next level and to generate additional insights.
Which links and overlaps do you see to your work? Feel free to comment on this post or use the contact form – I’m happy to learn from your experiences and ideas!