Tagged: GIS

Geography and bicycling research

People’s mobility, and thus bicycling, is spatial by its very nature. Being mobile by bicycle means to ride from one location to another in a given environment. Fundamental geographical characteristics, such as neighborhood, accessibility or distance, determine mobility to a certain decree. However, these interdependencies are often neglected in bicycling research, planning and politics. The consequences of non-spatial approaches become evident in many cities: the environment (neighborhood) of bicycle ways is not considered and thus often unattractive or not suitable, central facilities are poorly linked to bicycle infrastructure (accessibility) or not straightly connected (distance). The graphs below show the increasing distance travelled by commuters in Austria. The proximity between place of residence and workplace directly affects the mode choice.

Klick on the image to open the interactive view.

In order to explicitly consider the spatial nature of bicycling mobility and to relate multiple perspectives on the environment, Geographical Information Systems (GIS) are increasingly employed in bicycling research and promotion. GI systems are capable to model and digitally represent all relevant physical objects (road infrastructure, facilities, land use etc.) and moving subjects, including quantitative and qualitative attributes. Using the geographical coordinate as common denominator, all entities, together with domain-specific attribution can be related to each other. This way, additional insights and new information about the multifaceted system of bicycling mobility can be gained.

Such integrated approaches are especially beneficial in the context of bicycling, where not only rational, but also subjective (for example with regard to safety) factors, together with interests of various stakeholders need to be considered. Facing and adequately addressing this complexity is also relevant in bicycle-related research. Explicitly geo-spatial approaches leverage existing domain knowledge and contribute to better results. Representing, modeling, analyzing and visualizing different perspectives on bicycling in a spatial framework leads to new knowledge and a strong evidence-base for informed discussions, participation processes and policies.

At this year’s POLIS conference internet I’ll present three case studies, which proof the integrative power of geography and the contribution of GIScience to bicycling research:

1. FamoS

Preliminary result of an agent-based bicycle flow simulation.

To strengthen active forms of mobility, it is necessary to adapt the road network in a way which allows optimal usage in spatial as well as temporal respect. The research project FamoS internet, started in September 2016, investigates the potential of traditional demand based traffic models (“4-step-model”) and of agent based simulation models to estimate the volume of bicycle traffic for entire cities at a maximum detailed scale level. These models are then fed into a novel planning tool, which facilitates evidence-based decisions in the process of planning and (re) organizing public space for active mobility.

2. GISMO

The research project GISMO internet, started in October 2016, integrates domain-specific know-how from various disciplines, namely GIScience, sports medicine and mobility management. As part of the project, the health effects of several interventions that promote sustainable, active mobility are investigated in a clinical study. These data are then combined with spatial models and analysis routines in a comprehensive map-based information platform, where the spatial characteristics of commuting trips and expected health effects are considered in mobility recommendations on an individual level. For a brief project update see my last post here internet.

3. Planning a Bike Sharing System

In order to transfer existing knowledge on Bike Sharing Systems (BSS) and parameters to a specific urban setting and to provide an evidence base for decision makers, we applied a generic spatial framework to the city of Salzburg (Austria), which merges spatial analysis results, expert knowledge and feedback from citizen participation processes. With this approach the potential demand could have been estimated for any location in town. Moreover, the contribution of each station location to the entire system was spatially modeled and optimized.
The spatial framework will be published and presented at next year’s TRA conference internet in Vienna.

In all thress presented cases solutions emerged that would have not be possible in the respective domain silos. However, the geographical space (concepts from geography and GIScience) is an efficient facilitator for cross-domain collaboration and knowledge generation. Domains (such as health science and medicine) and applications (such as transport modeling) which are often disconnected from bicycling research and promotion are integrated on the basis of common geographical coordinates. Consequently, the complexity of bicycling mobility can be better addressed when various perspectives on bicycling and respective interdependencies are explicitly considered.

P.S.: The presentation is available on Slideshare internet

 

Advertisements

GIS, commuting and health

Started in fall 2016, the ongoing research project GISMO internet (Geographical Information Support for Healthy Mobility) is the first of its kind – at least here in Austria. It brings together domain expertise from very different fields in order to generate an evidence base for companies that seek to improve their employee’s health. Medical doctors from sports medicine and cardiology, GI scientists, planners, traffic engineers and mobility consultants collaborate in a highly inter-disciplinary setting. The research project is funded by the Austrian ministry for transport, innovation and technology in the program MdZ internet.

Concept of the GISMO project.

The project’s main idea is the following: commuting to work is time-consuming and if done by private car bad for many reasons: congestions, noise, air pollution, space consuming, expensive and inactive. The project aims to tackle the last aspect and provides highly detailed information for companies about which return they can expect from investing into employee’s active mobility. It is important for employers to get an idea how effective different interventions are. On the other hand, employees can only be motivated to change well established commuting routines when the alternatives are realistic and attractive.
This is why we (a) started a clinical intervention study, (b) developed advanced routing algorithms and spatial models and (c) pack all the information into an intuitive, interactive information platform.

Lots of activities have been going on during the first twelve months:

A clinical intervention study with 70 subjects was designed. The study was approved by the responsible ethic board, before it was implemented in a large company.
The study design is the following: 70 car commuters are randomized either into two intervention groups or into a control group. In one intervention group subjects are motivated to switch to bicycle commuting. Subjects in the other intervention group switch to public transit and walking. All subjects are medically investigated before and after the intervention. Additionally, all subjects are required to document their commuting mobility in a diary. In order to validate this documentation and to derive estimations for the energy turnover, the subjects wear GPS fitness watches for two weeks in the beginning and another two weeks towards the end of the intervention.
The aim of this study is to estimate the health effect of active mobility interventions, which can be implemented in any company.

In order to recommend realistic routes for active commuting, we developed a sophisticated routing workflow, which makes use of a national, multi-modal routing service (VAO internet). The routes are optimized in terms of health (minimum distance for walking or bicycling) and travel time.
Together with the routing recommendations users of the platform are provided with spatial information about the quality of the environment. For this, we have developed spatial models that calculate walkability, bikeability and PT quality indices and map them at a very high spatial resolution.

Walkability and bikeability index for the federal state of Salzburg. The spatial resolution is 100x100m.

Currently, the project partner TraffiCon internet is developing the concept for the web-based information platform. A first proof-of-concept will be presented at next year’s TRA conference internet in Vienna. The platform will provide detailed information on health effects of active commuting, recommendations for individually optimized routes and information on potential interventions for companies.
Two master students at Z_GIS internet have started to analyse the GPS and heart rate data from the first data collection phase. First results look very promising with regard to mode detection and trip parameters.
The clinical study is going to run until May 2018 and first results are expected to be available soon afterwards.

As project leader I’m happy to say that the collaboration with partner from very different domains is extremely fruitful. Actually, we learn a lot from each other and it becam obvious that there are a lot more common interests (“What have GI scientists have to do with cardiologists?!”) than we had expected!
In order to share our experiences and to learn from others who are doing research in similar settings, we will organize a special session at the GI-Forum conference 2018 in Salzburg. The call for papers internet has already opened – you should definitely have a look at it.

 

Active mobility at GI-Forum conference

Today, I had the honour to chair another special session that dealt with GIS and mobility research at this year’s GI-Forum conference internet. The session “Spatial Perspectives on Active Mobility” was the third in a series (see here internet for a review of the 2016 and here internet for the 2015 session).
Of course, we will have a “Spatial Perspectives on …” session in 2018 again – the call will be published in December this year. So, consider this as an option for your publishing and dissemination strategy (by the way, the GI-Forum journal internet is open access!)

This year’s special session was a paper session with four speakers, who all went through a rigorous review process. The diversity of the contributions was high, demonstrating the wide range of mobility research where GIS plays a crucial role:

  • Irene Fellner internet from Vienna University of Economics and Business opened the session at the very local scale. She presented her work internet on landmark-based indoor navigation. Although the applied ILNM (“indoor landmark navigation model”), an extended version of Duckham’s et al. (2010 internet) LNM, performed well, Irene pointed to two major challenges: first of all, the ILNM requires very detailed data, which are not always available and secondly, the visibility of landmarks from the perspective of the user is not always given or unknown.
    Irene’s paper emerged from her master thesis at the University of Salzburg, where she successfully finished the UNIGIS MSc study program. Dr. Gudrun Wallentin, UNIGIS program director, regarded this special session as perfect stage to hand over the UNIGIS International Association (UIA internet) award for excellent master theses. Congratulations!
  • Ulrich Leth internet (Vienna University of Technology) presented the findings of a recent study where they investigated the impact of a bike sharing system on public transit ridership in the city of Vienna, which is famous for its extensive and well-performing public transit system. In total, Ulrich and colleagues analysed 1 million Citybike internet trips from 2015. Different to the expectation the title provoked, they found that the bike sharing system virtually has no impact on PT ridership, simply because of the huge difference in size and capacity. However, some details in their results were interesting and probably of relevance for other BSS: a) Citybike trips primarily substitute short and inconvenient PT trips, b) most bike sharing trips are made when the travel time ratio compared to public transit is 0,5 and c) the most popular OD relations are typical student trips (between transport hubs and university and student dormitories and transport hubs or universities).
  • Tabea Fian, a student from Georg Hauger’s internet (lead author of the paper) group, also from Vienna University of Technology, presented a spatial analysis of urban bicycle crashes in Vienna. Interestingly, the data were very similar to those I’ve extensively used in my PhD (see this paper internet). In a purely exploratory study design Georg has tried to identify blackspots in the network and tested for their significance. However, as it became evident in the discussion, final conclusions are hard to draw without a statistical population.
  • The last presentation was given by Anna Butzhammer internet from RSA iSpace. She presented parts of her excellent master thesis, in which she analysed the inter-modal accessibility of central places. For this, she developed a model that facilitates door-to-door travel time calculations with different modes. Her findings are especially important for planning and optimizing public transit systems, which can be regarded as backbone for sustainable mobility.

Tomorrow, the German-speaking sister conference, AGIT internet, will host a special forum on autonomous driving internet and on Friday I will chair another session on advances in GIS-T. Well, there will be a lot to discover, learn and discuss; if you don’t have the chance to be there physically, follow me on Twitter internet and stay updated.

Cycle Competence Austria @Velocity2017

Take all relevant research institutions, planners and consulters, interest groups, authorities and manufacturers that are engaged in bicycling – voila, what you get is “Cycle Competence Austria” internet, an association of researcher and practitioners, who joined forces for the sake of further pushing the current bicycling boom and making knowledge available.

Klick on the picture to open a short Storify summary of the session.

The world’s biggest bicycling summit – Velo-city internet – takes place in Arnhem-Nijmegen, in the Dutch province of Gelderland these days. Today the Cycle Competence Austria had the nice opportunity to present bicycling knowledge “Made in Austria” to a broad audience.

Being a nation with still a lot of potential for a larger bicycle mode share, but quite exhaustive experiences and a growing body of knowledge, Austria can serve as front runner for so called climbing nations. In this session, six members of the Cycle Competence network presented their respective contribution to a prospering bicycling environment.

Martin Eder, the national bicycle advocate internet, started the series of presentations with an overview of national activities for bicycle promotion. He paid special attention to the second edition of the national masterplan internet, in which the official goal of 13% in the modal split by 2025 is published. In order to reach this, several national initiatives, such as the research funding program “Mobility of the Future” internet are launched and supported.

After Martin, Andrea Weninger from Rosinak & Partner internet shared here extensive experience in bicycle masterplan creation processes. She came up with a list of six points, which she regards to be essential for successful planning processes. Two of these success factors are to go for user-tailored masterplans (instead of copy-pasting elements from elsewhere), which are inspired by locals.

Andreas Friedwagner (Verracon internet) went on with a GIS-based analyses of accessibility and travel time analysis in the federal state of Vorarlberg. His beautiful maps clearly indicate which areas are well-served in terms of bicycle infrastructure and where improvements need to be made in order to motivate people to switch from car to active mobility. Interestingly, Andreas found in his studies that speed limits for cars (30 km/h within residential areas) have the most direct impact on overall bicycling safety.

Currently we are in an interesting transition phase from data scarcity in bicycle promotion to a data deluge (one of Andrea’s argument was that not everything that could be measured really contributes to a better understanding). However, the colleagues from BikeCitizens internet with their CEO Daniel Kofler do a great job in packing routing and navigation, promotion with gamification components and bicycle intelligence into a single app: the BikeCitizens app internet.

The session was completed by two contributions from research institutions. First I gave an overview of three current research project and argued that the spatial perspective facilitates joint efforts across domain boundaries:

After my presentation, Markus Straub from AIT internet presented two projects, each with a spatial optimization component: the EMILIA project internet seeks, among others, to optimize parcel deliveries in cities. In order to so the last miles from central distribution hubs to the consumer should be done by cargo-bikes. Markus and his colleagues have developed a route optimization algorithm for the delivery bicyclists. In the BBSS project internet a spatially explicit planning tool for optimizing the location of bike sharing stations was developed. This tool allows planners to estimate the potential demand for any location in a city.

Got interested in what happens in Austria in terms of bicycling research and promotion? Leave a comment here, visit the Cycle Competence Austria association booth at Velo-city or you can use Twitter internet or e-mail internet anytime.

Topics for GIScience master theses

After several months of setting the stage and doing lots of preparatory work, we are currently entering the ‘core phase’ in two research projects at the GI Mobility Lab internet. In this context we provide the opportunity to Master’s students to participate in the projects and write their thesis in GIScience (or related fields).

FamoS
Our part in the FamoS internet project is, among others, to develop an agent-based bicycle flow model for an entire city. In this context we offer two topics:

  1. Behavior to space (description internet)
  2. Exploring geoprocessing, geovisual analytical and mapping functionalities of GAMA (description internet)

GISMO
Experts from sports medicine, GIScience and transport planning and management are collaborating in the GISMO internet research project in order to provide a sound evidence basis for the promotion of active commuting. Part of the research is a clinical study, in which we document the subject’s mobility by different means. For the analysis of this data we offer the following two topics:

  1. Analysis of movement data from fitness watches (description internet)
  2. Linking travel diaries and GPS trajectories (description internet)

The topics are primarily offered to local internet and UNIGIS internet students. However, I’m also open to any other form of supervision and collaboration, given we find a sound format for it.

Lecture series “Active Mobility”

Since the VeloCity internet conference took place in Vienna in 2013, the Institute of Transportation internet (Vienna University of Technology) hosts an annual lecture series on bicycling and active mobility in general.

This semester, 80-100 students from various planning domains (urban, transport, regional planning) are attending the weekly lecture on “Active Mobility” internet. Yesterday I had the privilege to present parts of my current research and provide an overview of potential contributions of spatial information to an enhanced bicycling safety situation (slides in German language):

Although some of the students have already worked with GIS, none of them employe GIS in the context of mobility or transport research (at least nobody raised his/her hand when I was asking). Thus, I was happy to serve an appetizer for introducing the spatial perspective to a rather “technical” planning community.

Spatial information and bicycling safety

Originally, this blog was intended to document the progress of my PhD research. Mhm, this goal has been successfully reached yesterday …

Successfully defending my doctoral research (pictures by R. Wendel)

I finished my doctoral studies with a thesis on Spatial Information and Bicycling Safety and yesterday’s defense. The thesis internet is based on five peer-reviewed, published papers and aims to strengthen the spatial perspective in bicycling safety research.
The thesis is motivated by the fact that bicycling safety research is dominated by non-spatial domain experts, e.g. with backgrounds in trauma medicine, psychology, bio-mechanics, sociology, epidemiology, engineering, planning, law and some more. Interestingly, the spatial perspective on bicycling safety is hardly ever considered in these domain-specific approaches. This holds especially true for bicycle crash analyses, where basic geographical concepts, such as nearness, spatial autocorrelation and topology, are hardly ever considered.
Neglecting location as a co-determining attribute of safety is remarkable for a very simple reason. Mobility of people – and thus bicycling – as such is spatial by its very nature. Consequently, bicycling safety (from the physical environment to crashes to individually experienced safety threats) has spatial facets, which can be modeled and analyzed accordingly in order to gain relevant information for safer bicycling.

The primary hypothesis of my doctoral thesis is that spatial models and analyses contribute to a better understanding of certain aspects of bicycling safety and provide relevant results, which support measures to mitigate safety risks for bicyclists. Specifically I argued that:

  • Geographical Information Systems (GIS) facilitate holistic approaches for improving the bicycling safety situation. The spatial perspective is relevant for virtually all stages of the implementation of bicycling safety strategies.
  • Model-based approaches have a great potential in safety assessment and can form the basis for a number of applications – from status-quo analysis to planning and route optimization.
  • The spatial analysis of bicycle crashes reveals significant and safety-relevant patterns and particularities, which remain hidden in common, non-spatial or highly aggregated approaches.
  • The spatial perspective is crucial for advanced (simulation) models, which are necessary for reliable risk estimations on the local scale. Furthermore, the spatial implications of risk mapping on the local scale must be made explicit.

The thesis is structured in three elements. The first paper demonstrates the contribution of GIScience to bicycling safety research and is intended to set the stage for the remaining papers. Two of them primarily deal with spatial models in the context of road space assessment and transport modeling, while the rest is about spatial analysis of bicycle crashes.

Structure of the thesis

Although the completion of my doctoral studies is a huge, personal milestone, there is still a lot of research work in this context to be done. Besides the further development of the spatial models, the applied statistical methods and analysis routines, I see research gaps in the context of data (from static to dynamic real-time data and data streams), information (e.g. what are the effects of information provision on decision process or on individual and collective behavior?) and cross-domain collaboration.
The amount of work that still lies ahead motivates me to further blog on some of our research activities and to connect with anyone who is interested in spatial information, bicycling safety, urban mobility etc. I’m looking forward to learning, reading and hearing from you in virtual internet and – even more preferably – in face-to-face communication!